Estimates for Maximal Singular Integrals

نویسنده

  • LOUKAS GRAFAKOS
چکیده

It is shown that maximal truncations of nonconvolution L-bounded singular integral operators with kernels satisfying Hörmander’s condition are weak type (1, 1) and L bounded for 1 < p < ∞. Under stronger smoothness conditions, such estimates can be obtained using a generalization of Cotlar’s inequality. This inequality is not applicable here and the point of this article is to treat the boundedness of such maximal singular integral operators in an alternative way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Norm Estimates and Representation Formulas for Rough Singular Integrals

Weighted norm estimates and representation formulas are proved for nonhomogeneous singular integrals with no regularity condition on the kernel and only an L logL integrability condition. The representation formulas involve averages over a starshaped set naturally associated with the kernel. The proof of the norm estimates is based on the representation formulas, some new variations of the Hard...

متن کامل

Sharp maximal function estimates for multilinear singular integrals

A new proof of a weighted norm inequality for multilinear singular integrals of Calderón-Zygmund type is presented through a more general estimate involving a sharp maximal function. An application is given to the study of certain multilinear commutators.

متن کامل

Weighted inequalities for commutators of one-sided singular integrals

We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calderón-Zygmund kernel with support in (−∞, 0)) with BMO functions. We give the one-sided version of the results in [C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756] and [C. Pé...

متن کامل

A pointwise estimate for the local sharp maximal function with applications to singular integrals

Following the ideas of Carleson, Garnett–Jones and Fujii, we obtain a decomposition of an arbitrary measurable function f in terms of local mean oscillations. As a main application, in the case p > n we prove a conjecture by Cruz-Uribe and Pérez about two-weight norm inequalities for singular integrals. Also we extend an inequality, due to the author, relating f and the local sharp maximal func...

متن کامل

p-ESTIMATES FOR SINGULAR INTEGRALS AND MAXIMAL OPERATORS ASSOCIATED WITH FLAT CURVES ON THE HEISENBERG GROUP

The maximal function along a curve (t, γ (t), tγ (t)) on the Heisenberg group is discussed. The L p-boundedness of this operator is shown under the doubling condition of γ ′ for convex γ in R. This condition also applies to the singular integrals when γ is extended as an even or odd function. The proof is based on angular LittlewoodPaley decompositions in the Heisenberg group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002